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Introduction

In this paper, they introduce many different Methods of ridge
regression to solve multicollinearity problem. These methods
include Ordinary Ridge Regression(ORR), Generalized Ridge
Regression(GRR), and Directed Ridge Regression(DRR).

Some properties of ridge regression estimators and methods of
selecting biased ridge regression parameter are discussed. They use
data simulation to make comparison between methods of ridge
regression and Ordinary Least Squares (OLS) method. According
to a results of this study, they found that all methods of ridge
regression are better than OLS method when the Multicollinearity
is exist.



Multicollinearity

Multicollinearity refers to a situation in which or more predictor
variables in a multiple regression Model are highly correlated if
Multicollinearity is perfect (EXACT), the regression coefficients are
indeterminate and their standard errors are infinite, if it is less than
perfect. The regression coefficients although determinate but
posses large standard errors, which means that the coefficients can
not be estimated with great accuracy (Gujarati, 1995).



Methods used to detect multicollinearity

I Compute the correlation matrix of predictors variables

I Eigen structure of XTX

I Variance inflation factor (VIF)

I Checking the relationship between the F and T tests



Effects

I High variance of coefficients may reduce the precision of
estimation.

I Multicollinearity can result in coefficients appearing to have
the wrong sign.

I Estimates of coefficients may be sensitive to particular sets of
sample data.

I Some variables may be dropped from the model although,
they are important in the population.

I The coefficients are sensitive of to the presence of small
number inaccurate data values (more details in Judge 1988,
Gujarat; 1995).



The ordinary ridge regression (ORR)

Y = Xβ + ε

where Y is (n x 1) vector of the response variable values, X is (n x
p) matrix contains the values of P predictor variables and this
matrix is full Rank (matrix of rank p), β is a (p x 1) vector of
unknown coefficients, and ε is a (n x 1) vector of normally
distributed random errors with zero mean and common variance
σ2. Note that, Both X’s and Y have been standardized.



The ordinary ridge regression (ORR)

The ordinary least square (OLS) estimate β̂ of β is obtained by:
β̂ = (XTX )−1XTY , VAR(β̂) = σ2(XTX )−1, MSE (β̂) =

σ̂2
∑P

i=1
1
λi

The ridge solution is given by:
β̂(K ) = (XTX + KI )−1XTY ,K ≥ 0

Note that, if K=0, the ridge estimator become as the OLS. If all
K’s are the same, the resulting estimators are called the ordinary
ridge estimators (John, 1998).



The ordinary ridge regression (ORR)

MSE(β̂(K )) = σ̂2
∑P

i=1
λi

λi+K + K 2β̂T (XTX + KI )−2β̂.

(More details see Judge, 1988, Gujarat; 1995, Gruber 1998, Pasha
and Shah 2004) This means that MSE(β̂(K )) < MSE (β̂). There
always exists a K>0, such that MSE(β̂(K )) has smaller than
MSE(β̂)



The generalized ridge regression (GRR)

Let P is a (p x p) matrix with columns as eigenvectors of XTX .
Then the linear model can be written as

Y = Xβ + ε = (XP)(PTβ) + ε = X ∗α + ε

The ridge estimator for α is given by

ˆα(K ) = (X ∗TX ∗ + K )−1X ∗TY

.



The directed ridge regression (DRR)

Guilkey and Murphy (1975), proposed a technique called Directed
Ridge Regression. This method of estimation based on the
relationship between the eigenvalues of XTX and the variance of
αi . Since Var (αi ) = σ2Λ−1 , relatively precise estimation is
achieved for corresponding to large eigenvalues, while relatively
imprecise estimation is achieved for αi corresponding to small
eigenvalues.

As a result of adjusting only those elements of Λ−1 corresponding
to the small eigenvalues of XTX , the DRR estimator results in an
estimate of αi that is less biased than the resulting from GRR
estimator.



Choice of ridge parameter K

The ridge regression estimator does not provide a unique solution
to the problem of multicollinearity but provides a family of
solution. These solutions depend on the value of K (the ridge
biasing parameter). For example:

Hoerl, Kennard and Baldwin (1975), K̂ (HKB) = Pσ̂2/β̂T β̂ and

Lawless and Wang (1976), K̂ (LW ) = Pσ̂2/β̂TXTX β̂



Example

In this research, they simulate a set of data using SAS package,
where the correlation coefficients between the predictor variables
(X’s) are large (the number of predictor variables in this study are
six variables).



Example



Example

Using both OLS method and all methods of Ridge Regression to
analyze the simulated data, they get the following results :



Example

Method MSE

OLS 0.432
ORR1 0.36
ORR2 0.403
GRR 0.322
DRR 0.42



Example



Example

From the previous results, it is obvious that :

I All models of RR have smaller standard deviation than OLS.

I All models of RR have smaller MSE of regression coefficient
than OLS.

I While, all models of RR have larger R2 than OLS.
consequently, all models of RR are better than OLS when the
multicollinearity problem is exist in data.



Conclusion

In This research, they referred to the multicollinearity problem,
methods of detecting of this problem and effect on a result of
multiple regression model. Also, they introduced many different
models of ridge regression to solve this problem and make a
comparison between RR methods and OLS by using a simulation
data (2000 replications). Based on the standard deviation, MSE
and R2 for estimators of each model, they noted that all ridge
regression models are better than ordinary least square when the
multicollinearity problem is exist and the best model is the
generalized ridge regression because it has smaller MSE of
estimators, smaller standard deviation for most estimators and has
larger coefficient of determination
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The End


